SARS-CoV-2 en saliva: potencial vía de contagio e implicaciones en el tratamiento del paciente odontológico

Autores/as

  • Pérez-Domínguez Mariela Unidad de Investigaciones Morfopatológicas. Departamento de Ciencias Morfofuncionales. Facultad de Odontología. Universidad de Carabobo. Valencia. Venezuela. https://orcid.org/0000-0001-9971-7340
  • Pérez-Ybarra Luis Departamento de Ciencias Básicas. Escuela de Bioanálisis sede Aragua. Facultad de Ciencias de la Salud. Universidad de Carabobo. Maracay. Venezuela. https://orcid.org/0000-0003-0743-7953

DOI:

https://doi.org/10.54139/odousuc.v21i1.430

Palabras clave:

SARS-CoV-2, atención odontológica, saliva, pandemia, COVID-19

Resumen

El brote del SARS-CoV-2 en China durante diciembre 2019 mostró una transmisibilidad moderada, que luego en el mundo globalizado, se transformó en pandemia a partir de marzo 2020. Se están enfocando todos los esfuerzos científicos a nivel mundial para que se disponga de un tratamiento, cura o vacuna segura y eficiente, para que se controle y detenga la expansión y progresión del COVID-19. Entre tanto, se aplican medidas de prevención y control epidemiológico, conjuntamente con la atención sanitaria para evitar los contagios, la evolución del COVID-19 y las muertes. Este ensayo pretende describir la biología del SARS-CoV-2 y su presencia en saliva como una potencial vía contagio que obliga al desarrollo de cambios conductuales y la aplicación de protocolos de bioseguridad más estrictos para la atención odontológica del paciente, mientras se alcanza la inmunidad colectiva mundial para este virus. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020 Mar; 9(1):29. https://doi.org/10.1186/s40249-020-00646-x

Wu D, Wu T, Liu Q, Yang Z. The SARSCoV-2 outbreak: what we know. Int J Infect Dis. 2020 Mar. [Artículo en prensa]. https://doi.org/10.1016/j.ijid.2020.03.004

World Health Organization (WHO). Worldometer. COVID-19 coronavirus pandemic. 2020. [cited 2020 April 6]. https://www.worldometers.info/coronavirus/

Burrell CJ, Howard CR, Murphy FA. 2017. Fenner and White's medical virology. 5th edition. London: Academic Press.

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular pathogenesis and diagnosis of COVID19. J Pharm Anal. 2020 Mar. [Artículo en prensa]. https://doi.org/10.1016/j.jpha.2020.03.001

Dhama K, Patel SK, Sharun K, Pathak M, Tiwari R, Yatoo MI et al. SARS-CoV-2: Jumping the species barrier, lessons from SARS and MERS, its zoonotic spillover, transmission to humans, preventive and control measures and recent developments to counter this pandemic virus. Preprints. 2020 Apr. [Preprint]. https://doi.org/10.20944/preprints202004.0011.v1

Zhang C, Zheng W, Huang X, Bell EW, Zhou X, Zhang Y. Protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. J Proteome Res. 2020 Apr;19(4):1351-60. https://doi.org/10.1021/acs.jproteome.0c00129

Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020 Apr; 30:1-6. https://doi.org/10.1016/j.cub.2020.03.022

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Feb; 323(11):1061-9. https://doi.org/10.1001/jama.2020.1585

Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and Coronavirus Disease 2019: what we know so far. Pathogens. 2020 Mar; 9(3):231. https://doi.org/10.3390/pathogens9030231

Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020 Mar; 382(10):970-1. https://doi.org/10.1056/NEJMc2001468

Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020 Mar; 382(12):1177-9. https://doi.org/10.1056/NEJMc2001737

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426(6965):450-4. https://doi.org/10.1038/nature02145

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus- induced lung injury. Nat Med. 2005 Aug; 11(8):875-9. https://doi.org/10.1038/nm1267

Jin DY, Zheng BJ. Roles of spike protein in the pathogenesis of SARS coronavirus. Hong Kong Med J. 2009 Feb; 15(Suppl. 2):37-40.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar; 579(7798):270-3. https://doi.org/10.1038/s41586-020-2012-7

Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005 Sep; 309(5742):1864-8. https://doi.org/10.1126/science.1116480

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020 Mar. [Artículo en prensa]. https://doi.org/10.1038/s41586-020-2180-5

Xu X, Chen P, Wang J, Feng J, Zhou H, Li X et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020 Jan; 63(3):457-60. https://doi.org/10.1007/s11427-020-1637-5

Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA. COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect. 2020 Mar. [Artículo en prensa]. https://doi.org/10.1016/j.jinf.2020.02.026

Li C, Issa R, Kumar P, Hampson IN, LopezNovoa JM, Bernabeu C et al. CD105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci. 2003 Jul; 116:2677-85. https://doi.org/10.1242/jcs.00470

Chan CP, Siu KL, Chin KT, Yuen KY, Zheng B, Jin DY. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2006 Sep; 80(18):9279-87. https://doi.org/10.1128/JVI.00659-06

Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004 Jun; 203(2):631-7. https://doi.org/10.1002/path.1570

To FK, Lo AW. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol 2004 Jul; 203(3):740-3. https://doi.org/10.1002/path.1597

Imai Y, Kuba K, Rao S, Huang Y, Guo F, Guan B et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436(7047):112-6. https://doi.org/10.1038/nature03712

Elased KM, Cunha TS, Marcondes FK, Morris M. Brain angiotensin-converting enzymes: role of angiotensin-converting enzyme 2 in processing angiotensin II in mice. Exp Physiol. 2008 May; 93(5):665-75. https://doi.org/10.1113/expphysiol.2007.040311

The Human Protein Atlas. ACE2. [cited 2020 April 2]. https://www.proteinatlas.org/ENSG0000013 0234-ACE2.

Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan COVID-19. bioRxiv. 2020 Jan. [Preprint]. https://doi.org/10.1101/2020.01.26.919985

Wu K, Peng G, Wilken M, Geraghty RJ, Li F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J Biol Chem. 2012 Mar; 287(12):8904-11. https://doi.org/10.1074/jbc.M111.325803

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020 Mar; 94(7):e00127-20. https://doi.org/10.1128/JVI.00127-20

Gallagher PE, Ferrario CM, Tallant EA. MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am J Physiol Cell Physiol. 2008 Nov; 295(5):C1169-74. https://doi.org/10.1152/ajpcell.00145.2008

Xie X, Chen J, Xudong X, Wang X, Zhang F, Liu Y. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci. 2006 Apr;78(19):2166-71. https://doi.org/10.1016/j.lfs.2005.09.038

Soro-Paavonen A, Gordin D, Forsblom C, Rosengard-Barlund M, Waden J, Thorn L et al. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications. J Hypertens. 2012 Feb;30(2):375-83. https://doi.org/10.1097/HJH.0b013e32834f04b6

Ferrario CM, Strawn WB. Role of the ReninAngiotensin-Aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol. 2006 Apr; 98(1):121- 8. https://doi.org/10.1016/j.amjcard.2006.01.059

Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M et al. The ACE2/Angiotensin-(1-7)/MAS axis of the Renin-Angiotensin system: focus on Angiotensin-(1-7). Physiol Rev. 2018; 98(1):505-53. https://doi.org/10.1152/physrev.00023.2016

Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020 Mar; 63(3):364-74. https://doi.org/10.1007/s11427-020-1643-8

Danilczyk U, Penninger JM. Angiotensinconverting enzyme II in the heart and the kidney. Circ Res. 2006 Mar; 98(4):463-71. https://doi.org/10.1161/01.RES.0000205761.22353.5f

Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006 May; 20(5):953-70. https://doi.org/10.1210/me.2004-0536

Mehta PK. Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007 Jan; 292(1):C82- 97. https://doi.org/10.1152/ajpcell.00287.2006

World Health Organization (WHO). Report of the WHO-China joint mission on coronavirus disease 2019. 2020. [cited 2020 April 5]. https://www.who.int/docs/defaultsource/coronaviruse/who-china-jointmission-on-covid-19-final-report.pdf

Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect. 2020 Mar; 9(1):747-56. https://doi.org/10.1080/22221751.2020.1745095

Amanat F, Nguyen THO, Chromikova V, Strohmeier S, Stadlbauer D, Javier A et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. MedRxiv. 2020 Mar. [Preprint]. https://doi.org/10.1101/2020.03.17.20037713

Petherick A. Developing antibody tests for SARS-CoV-2. Lancet. 2020 Apr; 395(10230):1101-2. https://doi.org/10.1016/S0140-6736(20)30788-1

Wilson ME. Serologic tests for SARS-CoV2: first steps on a long road. N Engl J Med. 2020 Mar. [cited 2020 April 5]. https://www.jwatch.org/na51255/2020/03/31 /serologic-tests-sars-cov-2-first-steps-longroad

Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020 Feb; 12:8. https://doi.org/10.1038/s41368-020-0074-x

Liu L, Wei Q, Alvarez X, Hang H, Du Y, Zhu H et al. Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of Rhesus macaques. J Virol 2011 Apr; 85(8):4025-30. https://doi.org/10.1128/JVI.02292-10

Wang WK, Chen SY, Liu IJ, Chen YC, Chen HL, Yang CF et al. Detection of SARSassociated coronavirus in throat wash and saliva in early diagnosis. Emerg Infect. Dis. 2004 Jul; 10(7):1213-9. https://doi.org/10.3201/eid1007.031113

To KKW, Tsang OTY, Yip CCY, Chan KH, Wu TC, Chan JMC et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect. Dis. 2020 Feb. [Artículo en prensa]. https://doi.org/10.1093/cid/ciaa149

To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020 Mar. [Artículo en prensa]. https://doi.org/10.1016/S1473-3099(20)30196-1

Bagheri SHR, Asghari AM, Farhadi M, Shamshiri AR, Kabir A, Kamrava SK et al. Coincidence of COVID-19 epidemic and olfactory dysfunction outbreak. MedRxiv. 2020 Mar. [Preprint]. https://doi.org/10.1101/2020.03.23.20041889

The Human Protein Atlas. Human saliva. [cited 2020 Mar 31]. https://www.proteinatlas.org/search/saliva+h uman

Hu S, Xie Y, Ramachandran P, Ogorzalek Loo RR, Li Y, Loo JA et al. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics. 2005 Apr; 5(6):1714-28. https://doi.org/10.1002/pmic.200401037

Collins AR, Grubb A. Cystatin D, a natural salivary cysteine protease inhibitor, inhibits coronavirus replication at its physiologic concentration. Oral Microbiol Immunol. 1998 Feb; 13(1):59-61. https://doi.org/10.1111/j.1399-302x.1998.tb00753.x

van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN et al. Aerosol and surface stability of SARSCoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020 Mar. [Artículo en prensa]. https://doi.org/10.1056/NEJMc2004973

Zhao S, Lin Q, Ran J, Musa S, Yang G, Wang W et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect. Dis. 2020 Mar; 92:214-7. https://doi.org/10.1016/j.ijid.2020.01.050

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 Feb. [Artículo en prensa]. https://doi.org/10.1056/NEJMoa2002032

Environmental Protection Agency (EPA). Pesticide registration. List N: Disinfectants for use against SARS-CoV-2. [cited 2020 April 7]. https://www.epa.gov/pesticideregistration/list-n-disinfectants-use-againstsars-cov-2

Consejo Dentistas. Organización Colegial de Dentistas de España. El Nuevo Coronavirus 2019-nCOV y el manejo del paciente dental. Informe técnico del Consejo General de Dentistas de España. Marzo 2020. [cited 2020 April 7]. https://gacetadental.com/wpcontent/uploads/2020/03/INFORMETÉCNICO-DEL-CONSEJO-GENERAL.pdf

Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci. 2020 Mar; 12(1):9. https://doi.org/10.1038/s41368-020-0075-9

Meng L, Hua F, Bian Z. Coronavirus disease 2019 (COVID-19): emerging and future challenges for dental and oral medicine. J Dent Res. 2020 Mar. [Artículo en prensa]. https://doi.org/10.1177/0022034520914246

Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020 Mar; 6:16. https://doi.org/10.1038/s41421-020-0156-0

Caly L, Druce JD, Catton MK, Jans DA, Wagstaff KM. The FDA-approved drug Ivermectin inhibits the replication of SARSCoV-2 in vitro. Antivir Res. 2020 Apr. [Artículo en prensa]. https://doi.org/10.1016/j.antiviral.2020.104787

Descargas

Publicado

01-07-2020

Cómo citar

Pérez-Domínguez, M., & Pérez-Ybarra, L. (2020). SARS-CoV-2 en saliva: potencial vía de contagio e implicaciones en el tratamiento del paciente odontológico . ODOUS Científica, 21(1), 77–88. https://doi.org/10.54139/odousuc.v21i1.430