Disminución de la actividad del grafito irradiado y los residuos radioactivos líquidos

Autores/as

DOI:

https://doi.org/10.54139/revinguc.v28i1.10

Palabras clave:

pulsos electromagnéticos de nanosegundos, grafito, radiación, líquido radioactivo

Resumen

Actualmente, el problema de la desactivación de residuos radioactivos es muy urgente. El método propuesto consiste en exponer la solución acuosa de radionúclido a potentes pulsos electromagnéticos de nanosegundos colocando la solución tratada entre dos electrodos conectados a las terminales del generador. Se aplican pulsos de corriente de polo único con una longitud de 1 ns, amplitud de más de 5 kV y frecuencia de repetición de 1 kHz. Dichos pulsos se pueden obtener de las unidades generadoras con una amplitud de 5 a 15 kV. Tienen una capacidad de pulso de 1 a 4 MW y la capacidad de la red debajo de 50 W. Los pulsos causan la radiólisis del agua y la descomposición rápida de radionúclidos. La radiólisis, causa la generación de electrones hidratados, átomos de hidrógeno y varios radicales que provocan la precipitación de radionúclidos, como 137Cs y 90Sr. Se describen las pruebas y se presentan los resultados experimentales de la influencia de fuertes pulsos electromagnéticos de nanosegundos en las propiedades de las soluciones acuosas con los núclidos radioactivos de 137Cs y 90Sr y en piezas de grafito irradiado. La influencia por 15 minutos de los pulsos en los residuos líquidos reales y soluciones acuosas reduce el tamaño de los núclidos en el agua en 5 a 50 veces. El efecto descrito permanece por veinte días. Se observa el doble de la disminución de actividad beta por 25 minutos en trozos grandes de grafito irradiado. Se desarrolla, ensaya y patenta la unidad de flujo (RU 2726145. MPK G21F 9/28, 2020). Se puede usar esta tecnología para tratar soluciones de emergencia con tritio en la central nuclear de Fukushima.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

L. I. Urutskoev, V. I. Liksonov, and V. G. Tsinoev, "Experimental Detection of Strange Radiation and Transformation of Chemical Elements [Eksperimental'noye obnaruzheniye "strannogo" izlucheniya i transformatsii khimicheskikh elementov]," Appl Phys, no. 4, pp. 83-100, 2000.

V. D. Kuznetsov, G. V. Myshinskiy, V. I. Zemennik, and V. O. Arbuzov, "Proverochnyye eksperimenty po nablyudeniyu effekta kholodnoy transmutatsii elementov. [Check Tests for Observing Cold Transmutation of Elements]," in Proceedings of the 8th Russian conference on cold transmutation of chemical element cores and Moscow, Russia, Moscow, Ed. FIAN, 2001, pp. 308-332.

R. I. Nigmatulin, J. R. T. Lahi, R. P. Taleyarhan, K. D. West, and R. S. Block, "O termoyadernykh pritsessakh v kavitiruyuschikh. [On thermonuclear processes in cavitating bubbles]," Physics Uspekhi, vol. 57, no. 9, p. 877-890, 2014. https://doi.org/10.3367/UFNe.0184.201409b.0947

A. F. Kladov, "Inventor, Ultrasonic Activator," Russia Russian Federation Patent 2 085 273, Nº 95 109 892/25, Application of 1995 Apr 20, 1995 and published on 1997 Jul 27.

M. Jung, F. Bosch, K. Beckert, H. Eickhoff, H. Folger, B. Franzke, A. Gruber, P. Kienle, O. Klepper, W. Koenig, C. Kozhuharov, R. Mann, R. Moshammer, F. Nolden, U. Schaaf, G. Soff, P. Spädtke, M. Steck, T. Stöhlker, and K. Sümmerer, "First observation of bound-state β-decay," Physical Review Letters, vol. 69, no. 15, pp. 2164-2167, 1992. https://doi.org/10.1103/PhysRevLett.69.2164

S. N. Andreev and G. A. Shafeev, "Nonlinear Quenching of the Radioactivity of Aqueous Solutions of Salts of Nuclides by Laser Ablation of Nanoparticles of Metals [Nelineynoye tusheniye radioaktivnosti vodnykh rastvorov soley nuklidov pri lazernoy ablyatsii nanochastits metallov]," Radioelectronics. Nanosystems. Information Technologies, (RENSIT), vol. 9, no. 1, pp. 65-73, 2017. https://doi.org/10.17725/rensit.2017.09.065

M. A. Tukhtarov, L. A. Andreeva, and A. A. Romanenkov, "Konditsionirovaniye reaktornogo grafita vyvodimykh iz ekspluatatsii uran-grafitovykh reaktorov dlya tseley zakhoroneniya. [Conditioning Reactor Graphite of Uranium-Graphite Channel-Type Reactors Put Out of Action for Burial]," Atomic Energy, vol. 8, no. 6, 2016.

V. P. Alexandrov, "Method of radioactive graphite waste treatment," Russia Patent RU 2 273 068, MPK G21F 9/28, published March 23, 2006.

Y. A. Pohitonov and M. U. Kirshin, "Method of processing reactor graphite wastes," Russia RF Patent RU 2 624 270. MPK G21F 9/28, published July 7, 2017.

E. V. Bespela, A. O. Pavluk, A. M. Izmestiev, S. G. Kotlyarevskiy, and A. M. Mikhailets, "Method of processing irradiated reactor graphite," Russia RF Patent RU 2 580 818. MPK G21F 9/28, published on April 10, 2016.

V. F. Myshkin, A. O. Pavluk, and S. Kotlyarevskiy, "Method of cleaning irradiated graphite bushings of uranium-graphite reactor and device for its implementation," Russia RF Patent RU 2 603 015. MPK G21F 9/28, published on November 20, 2016.

A. Baeza, M. Fernandez, M. Herranz, L. F., M. C., and S. A., "Elimination of man-made radionuclides from natural waters by applying a standard coagulation-flocculation process," Journal of Radioanalytical and Nuclear Chemistry, vol. 260, no. 2, pp. 321-326, 2004. https://doi.org/10.1023/B:JRNC.0000027104.99292.6b

A. Bo, S. Sarina, H. Liu, Z. Zheng, Q. Xiao, Y. Gu, G. Ayoko, and H. Zhu, "Efficient removal of cationic and anionic radioactive pollutants from water using hydrotalcite-based getters," ACS Applied Materials & Interfaces, vol. 8, no. 25, pp. 16 503-16 510, 2016. https://doi.org/10.1021/acsami.6b04632

A. G. Chmielewski, M. Harasimowicz, B. Tyminski, and G. Zakrzewska-Trznadel, "Concentration of low- and medium- level radioactive wastes with three-stage reverse osmosis pilot plant," Separation Science and Technology, vol. 36, no. 5-6, pp. 1117-1127, 2001. https://doi.org/10.1081/SS-100103640

S. Y. Ding, Y. Yang, H. O. Huang, H. C. Liu, and L. A. Hou, "Effects of feed solution chemistry on low-pressure reverse osmosis filtration of cesium and strontium," Journal of Hazardous Materials, vol. 294, pp. 27-34, 2015. https://doi.org/10.1016/j.jhazmat.2015.03.056

P. A. Haas, "A review of information on ferrocyanide solids for removal of cesium from solutions," Separation Science and Technology, vol. 28, no. 17-18, pp. 2479-2506, 1993. https://doi.org/10.1080/01496399308017493

K. S. Hwang, C. W. Park, K.-W. Lee, S.-J. Park, and H.-M. Yang, "Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 516, pp. 375-382, 2017. https://doi.org/10.1016/j.colsurfa.2016.12.052

F. Jia and J. L. Wang, "Separation of cesium ions from aqueous solution by vacuum membrane distillation process," Progress in Nuclear Energy, vol. 98, pp. 293-300, 2017. https://doi.org/10.1016/j.pnucene.2017.04.008

F. Jia, J. F. Li, J. L. Wang, and Y. L. Sun, "Removal of strontium ions from simulated radioactive wastewater by vacuum membrane distillation," Annals of Nuclear Energy, 2017. https://doi.org/10.1016/j.anucene.2017.02.003

P. Kaewmee, J. Manyam, P. Opaprakasit, G. Le, N. Chanlek, and P. Sreearunothai, "Effective removal of cesium by pristine graphene oxide: performance, characterizations, and mechanisms," RSC Advances, vol. 7, no. 61, pp. 38 747-38 756, 2017. https://doi.org/10.1039/C7RA04868H

Y. Kim, T. Kim, Y. Kim, D. Harbottle, and J. Lee, "Highly effective Cs+ removal by turbidity-free potassium copper hexacyanoferrate-immobilized magnetic hydrogels," Journal of Hazardous Materials, vol. 340, pp. 130-139, 2017. https://doi.org/10.1016/j.jhazmat.2017.06.066

K. Kosaka, M. Asami, N. Kobashigawa, K. Ohkubo, H. Terada, N. Kishida, and M. Akiba, "Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake," Water Research, vol. 46, no. 14, pp. 4397-4404, 2012. https://doi.org/10.1016/j.watres.2012.05.055

S. Kwon, J. Choi, S. Cho, H. Lee, W. Oh, and S.-J. Choi, "A novel method for separating Cs+ from liquid radioactive waste using ionic liquids and a selective extractant," Journal of Radioanalytical and Nuclear Chemistry, vol. 311, no. 3, pp. 1605-1611, 2016. https://doi.org/10.1007/s10967-016-5112-y

J. M. Arnal, M. Sancho, B. García-Fayos, G. Verdú, C. Serrano, and J. T. Ruiz-Martínez, "Declassification of radioactive water from a pool type reactor after nuclear facility dismantling," Radiation Physics and Chemistry, vol. 138, pp. 72-74, Sep. 2017. https://doi.org/10.1016/j.radphyschem.2017.03.027

N. J. Hartley, J. Grenzer, W. Lu, L. Huang, Y. Inubushi, N. Kamimura, K. Katagir, R. Kodama, A. Kon, V. Lipp, M. Makita, T. Matsuoka, N. Medvedev, S. Nakajima, N. Ozaki, T. Pikuz, A. V. Rode, K. Rohatsch, D. Sagae, A. K. Schuster, K. Tono, J. Vorberger, T. Yabuuchi, and D. Kraus, "Ultrafast anisotropic disordering in graphite driven by intense hard X-ray pulses," High Energy Density Phys, vol. 32, pp. 63-69, 2019. https://doi.org/10.1016/j.hedp.2019.05.002

V. S. Belkin and G. I. Shulzhenko, "Nanosecond pulse generator," Russia RF Patent RU N2 004 064. MPK H03K3/33, H03K3/45, published on June 05, 1991.

State All-union Standard Russia 51592-2000, "Water. General sampling requirements," Technical Committee for Standardization TC 343 "Water Quality", Russia, Tech. Rep., 2000.

V. V. Krymsky, L. P. Sinelnikov, I. V. Novoselov, and V. N. Ivanov, "Method of reducing radioactivity of spent graphite blocks and apparatus for implementation thereof," Russia RF Patent RU 2 726 145. MPK G21F 9/28, published on July 7, 2020.

D. V. Filippov, Vliyaniye ionizatsii i vozbuzhdeniya atomov elektromagnitnym polem na usloviya stabil'nosti yader i protsessy radioaktivnogo raspada. [Influence of Ionization and Excitation of Atoms by Electromagnetic Field on Nuclei Stability Conditions and Radioactive Disintegration Processes]. Moscow: A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences Publ, 2008.

E. J. Hart and M. Anbar, The Hydrated Electron. New York: Wiley Inter Science, 1970.

A. K. Pikaev, Modern Radiation Chemistry. Sovremennaya radiatsionnaya khimiya. Radioliz gazov i zhidkostey. [Radiolysis of Gases and Liquids]. Moscow: Nauka Publ, 1986.

Descargas

Publicado

03-05-2021

Cómo citar

Krymsky , V. V., & Plotnikova, N. V. (2021). Disminución de la actividad del grafito irradiado y los residuos radioactivos líquidos. Revista Ingeniería UC, 28(1), 23–34. https://doi.org/10.54139/revinguc.v28i1.10

Número

Sección

Artículos