Estado del arte. Modos de operación y estrategias de control para sistemas de refrigeración solar

Autores/as

  • Juan J. Diaz Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain https://orcid.org/0000-0002-6841-6542
  • José A. Fernández Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain https://orcid.org/0000-0002-4882-7029

DOI:

https://doi.org/10.54139/revinguc.v29i3.152

Palabras clave:

enfriamiento por absorción, energía solar, Frío solar, Estrategias de control

Resumen

El presente trabajo de revisión tiene como objetivo principal proporcionar una visión general sobre los modos de operación y las principales estrategias de control y regulación diseñadas e implementadas para la operación de sistemas térmicos de frio solar, destacando sus principales características, ventajas e inconvenientes. Además, se detallan las condiciones generales de contorno que rigen el funcionamiento de las máquinas de absorción de      LiBr-H2O de simple y doble efecto accionadas por agua caliente, profundizando en los efectos o reacciones que se producen en este tipo de equipos con respecto a las variaciones que puedan ocurrir en las condiciones de funcionamiento del sistema.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

K. Herold, R. Radermacher, and S. Klein, Absorption Chillers and Heat Pump, 2nd ed. Boca Raton, USA: CRC Press, 2016.

J. Wang, S. Shang, X. Li, B. Wang, W. Wu, and W. Shi, “Dynamic Performance Analysis for an Absorption Chiller under Different Working Conditions,” Appl. Sci., vol. 7, no. 8, p. 797, 2017. https://doi.org/10.3390/app7080797

M. H. Zaidan, H. Khalaf, and A. Hashim, “Performance Evaluation of the Single-Stage Absorption Cooling System through Energy and Exergy Analysis,” in IOP Conference Series: Materials Science and Engineering, Volume 1094, 1st International Conference on Sustainable Engineering and Technology (INTCSET 2020), Baghdad, Iraq, 2021.

D. Kumar Mohanty and A. Padhiary, “Thermodynamic Performance Analysis of a Solar Vapour Absorption Refrigeration System,” Sci. Technol. Eng., vol. 4, no. 4, pp. 45–54, 2015.

J. Abdulateef, S. D. Ali, and M. S. Mahdi, “Thermodynamic analysis of solar absorption cooling system,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 60, no. 2, pp. 233–246, 2019.

A. Preisler, IEA Solar Heating and Cooling Programm. Gleisdorf, Austria: IEA Forschungs Kooperation, 2011, ch. Appendix 1 to IEA SHC Task 38 report D-A5: “List of existing small scale solar heating and cooling plants”.

A. Häberle, F. Luginsland, C. Zahler, M. Berger, M. Rommel, and H. M. Henning, “A linear concentrating Fresnel collector driving a NH3 – H2O absorption chiller,” in Proc. Second Int. Conf. Sol. AirConditioning, Tarragona, Spain, 2007.

M. Berger, M. Weckesser, C. Weber, J. Döll, A. Morgenstern, and A. Häberle, “Solar Driven Cold Rooms for Industrial Cooling Applications,” Energy Procedia 2012, vol. 30, pp. 904–911, 2012. http://doi.org/10.1016/j.egypro.2012.11.102

J. Cardemil, R. Escobar, G. Quinones, C. Cortes, A. Pino, A. Häberle, and C. Tenreiro, “Combined Generation of Heat and Cooling for a Winemaking Process Using a Solar-Assisted Absorption Chiller,” in Solar World Congress 2015, Daegu, Korea, 08 – 12 November 2015. http://doi.org/10.18086/swc.2015.10.43

F. . R. F. Bermejo, P. / Pino, “Solar absorption cooling plant in Seville,” Sol. Energy, vol. 84, no. 8, pp. 1503– 1512, 2010. http://doi.org/10.1016/j.solener.2010.05.012

D. Ortiz Machado, A. Sanchez del Pozo Fernandez, A. J. Len, G. Andrade, J. Normey-Rico, C. Bordons, and E. Camacho, “Split-range control for improved operation of solar absorption cooling plants,” Renew. Energy, vol. 192, pp. 361–672, 2022. http://doi.org/10.1016/j.renene.2022.04.064

A. Hmida, N. Chekir, and A. Brahim, “Performance of an Absorption Refrigerator Using a Solar Thermal Collector,” International Journal of Energy and Power Engineering, vol. 12, no. 10, pp. 787–792, 2018.

F. Pino, R. Caro, F. Rosa, and J. Guerra, “Experimental validation of an optical and thermal model of a linear Fresnel collector system,” Appl. Therm. Eng., vol. 50, no. 2, pp. 1463–1471, 2013. http://doi.org/10.1016/j.applthermaleng.2011.12.020

A. Montero-Izquierdo, T. Hirsch, H. Schenk, J. C. Bruno, and A. Coronas, “Performance analysis of absorption cooling systems using linear fresnel solar collectors,” in Third International Conference on Applied Energy, Perugia, Italy, 2011.

H. Rubio, J. Puertas, and T. Carretero, “Solar refrigeration by absorption in tertiary sector,” in Int. Gas Union World Gas Conf. Pap., 2009.

P. Kohlenbach and U. Jakob, Solar cooling: The earthscan expert guide to solar cooling systems, 1st ed. UK: Routledge, 2014.

P. Coroyannakis, T. Tsoutsos, Z. Gkouskos, S. Ruginetti, and S. Castaldo, Overview and Recommendations. Stornoway: ISLENET, 2009.

J. A. Aguilar-Jiménez, N. Velázquez-Limón, R. LópezZavala, L. A. González-Uribe, S. Islas, E. González, L. Ramírez, and R. Beltrán, “Optimum operational strategies for a solar absorption cooling system in an isolated school of Mexico,” Int. J. Refrig., vol. 112, pp. 1–13, 2020. https://doi.org/10.1016/j.ijrefrig.2019.12.010

B. L. Gupta, N. Jha, D. Vyas, and A. Daiya, “Performance Analysis of Solar Thermal Cooling System for an Office Building in Indian Climates using Flat Plate Collector,” Int. J. Eng. Tech., vol. 3, no. 4, pp. 36–40, 2017.

B. S. Sastrosudiro, A. Lubis, M. I. Alhamid, and N. Jusuf, “Control Strategy of Solar Thermal Cooling System under the Indonesia Climate,” International Journal of Energy and Power Engineering, vol. 10, no. 4, pp. 450–456, 2016. http://doi.org/10.5281/ZENODO.1339229

L. Huang, R. Zheng, and U. Piontek, “Installation and Operation of a Solar Cooling and Heating System Incorporated with Air-Source Heat Pumps,” Energies, vol. 12, no. 6, p. 996, 2019. https://doi.org/10.3390/en12060996

V. Vittorio, G. Baccino, and S. Pizzuti, “Control Strategy for the Optimal Operation of a Solar Cooling Installation,” in ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, Nantes, France, 2012. https://doi.org/10.1115/ESDA2012-82718

A. J. Gallego Len, A. Sanchez del Pozo Fernandez, J. Escaño, and E. Camacho, Advances in Robotics and Automatics Control: Reviews, Book Series. IFSA Publishing, 2021, ch. Chapter 3. Model Predictive Control of Solar Cooling Plants: Review and Applications, pp. 119–150.

B. M. Becker, M. Helm, and C. Schweigler, “Task 38 solar air-conditioning and refrigeration collection of selected systems schemes “generic systems”,” ZAE Bayern, Abtl.1: Technik für Energiesysteme und Erneuerbare Energien, Walther-Meissner-Stra e 6, D85748 Garching, Technical report, 2009.

R. Lazzarin, “Solar cooling plants: How to arrange solar collectors, absorption chillers and the load,” Int. J. Low-carbon Technol, vol. 2, no. 4, pp. 376–390, 2007. http://doi.org/10.1093/ijlct/2.4.376

B. Nienborg and A. Dalibard, “Optimized generic control strategies for solar thermal cooling systems,” in 6th International Conference Solar Air-Conditioning 2015, 2015. http://doi.org/10.24406/publica-fhg-389827

B. Nienborg, A. Dalibard, L. Schnabel, and U. Eicker, “Approaches for the optimized control of solar thermally driven cooling systems,” Appl. Energy , vol. 185, no. 1, pp. 732–744, 2016. http://doi.org/10.1016/j.apenergy.2016.10.106

P. Kohlenbach, “Solar cooling with absorption chillers: Control strategies and transient chiller perfomance,” Ph.D Thesis, Fakultät III – Prozesswissenschaften der Technischen Universität Berlin, Berlin, 2006.

D. Bettoni, “Design and assessment of optimized control strategies for solar heating and cooling systems,” Doctoral thesis, Università Degli Studi Di Bergamo, Bergamo, Italy, 2013.

A. Dalibard, D. Gürlich, D. Schneider, and U. Eicker, “Control Optimization of Solar Thermally Driven Chillers,” Energies, vol. 9, no. 11, p. 864, 2016. https://doi.org/10.3390/en9110864

A. Kühn, F. Ziegler, and J. Corrales Ciganda, “Comparison of control strategies of solar absorption chillers,” in Conference: 1st International Conference on Solar Heating, Cooling and Buildings (Eurosun), 2008.

K. Witheephanich, J. M. Escaño, and C. Bordons, “Control strategies of a solar cooling plant with fresnel collector: A case study,” in 2014 International Electrical Engineering Congress (iEECON), 2014, pp. 1–4. http://doi.org/10.1109/iEECON.2014.6925976

R. Meligy, M. Rady, A. El-Samahy, W. Mohamed, F. Paredes, and F. M. Montagnino, “Simulation and Control of Linear Fresnel Reflector Solar Plant,” Int. J. Renew. Energy Res., vol. 9, no. 2, 2019. https://doi.org/10.20508/ijrer.v9i2.9247.g7648

S. Pintaldi, A. Shirazi, S. Sethuvenkatraman, S. D. White, G. Rosengarten, and R. A. Taylor, “Simulation results of a high-temperature solar-cooling system with different control strategies,” in Proceedings of the AsiaPacific Solar Research Conference 2014, pp.1-8; 2014 Asia-Pacific Solar Research Conference, 2015.

B. S. Sastrosudiro, A. Lubis, M. I. Alhamid, and N. Jusuf, “Control Strategy of Solar Thermal Cooling System under the Indonesia Climate,” International Journal of Earth, Energy and Environmental Sciences, vol. 9, no. 4, 2016. http://doi.org/10.5281/ZENODO.1339229

M. Guerrero Delgado, J. Sanchez Ramos, D. Castro Medina, T. Palomo Amores, A. Cerezo-Narváez, and S. Álvarez, “Fresnel solar cooling plant for buildings: Optimal operation of an absorption chiller through inverse modelling,” Energy Reports , vol. 8, p. 3189–3212, 2022. https://doi.org/10.1016/j.egyr.2022.02.128

J. Albers, “New absorption chiller and control strategy for the solar assisted cooling system at the German federal environment agency,” Int. J. Refrig. , vol. 39, pp. 48–56, 2014. http://doi.org/10.1016/j.ijrefrig.2013.08.015

J. Román, R. Romero, A. Rodríguez-Martínez, and P. Parra, “Thermal Analysis of an Absorption and Adsorption Cooling Chillers Using a Modulating Tempering Valve,” in Zero and Net Zero Energy, G. Hailu, Ed. Rijeka: IntechOpen, 2019, ch. 5. http://doi.org/10.5772/intechopen.84737

J. Farnós, J. Castro, G. Papakokkinos, and A. Oliva, “Control Strategy Approach Based on the Operational Results of a Small Capacity Direct Air-Cooled LibrWater Absorption Chiller,” in IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, Barcelona, Spain, 2017.

X. Yujie, S. Zhang, and Y. Xiao, “Modeling the Dynamic Simulation and Control of a Single effect LiBr – H2O Absorption Chiller,” Appl. Therm. Eng., vol. 107, pp. 1183–1191, 2016. http://doi.org/10.1016/j.applthermaleng.2016.06.043

A. Sabbagh and J. Gomez, “Optimal control of single stage LiBr/water absorption chiller,” Int. J. Refrig. , vol. 92, pp. 1–9, 2018. http://doi.org/10.1016/j.ijrefrig.2018.05.007

Descargas

Publicado

27-04-2023

Cómo citar

Diaz, J. J., & Fernández , J. A. (2023). Estado del arte. Modos de operación y estrategias de control para sistemas de refrigeración solar. Revista Ingeniería UC, 29(3), 213–232. https://doi.org/10.54139/revinguc.v29i3.152

Número

Sección

Estado del arte