Estado del arte. Métodos de desalinización de agua

Autores/as

  • Henry Salinas-Freire Grupo de Análisis de Procesos, Facultad de Ingeniería Química, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE). Marianao, La Habana, Cuba. https://orcid.org/0000-0002-0874-6486
  • Osney Pérez-Ones Grupo de Análisis de Procesos, Facultad de Ingeniería Química, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE). Marianao, La Habana, Cuba. https://orcid.org/0000-0002-0366-0317
  • Susana Rodríguez-Muñoz Grupo de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE). Marianao, La Habana, Cuba. https://orcid.org/0000-0001-9871-1254

DOI:

https://doi.org/10.54139/revinguc.v28i2.21

Palabras clave:

Desalinización, agua de mar, osmosis inversa, evaporación instantánea multietapa, destilación multi efecto.

Resumen

El agua de mar desalinizada ha llegado a ser una fuente importante de abastecimiento para grupos poblacionales en  todo  el  mundo  debido  a  la  creciente  escasez  de  agua  para  consumo  humano.  Muchos  factores  han  aportado  en  ello, la abundante disponibilidad de agua de mar y salobre, la diversidad de métodos desarrollados, sus continuas mejoras y la paulatina reducción de costos. Los principales métodos usados son la ósmosis inversa, la evaporación instantánea multi etapa y la destilación multi efecto, los cuales han mejorado su eficiencia debido tanto a la experiencia con las plantas desalinizadoras como a las investigaciones y desarrollos teóricos recientes. En este documento se presenta una revisión de los métodos de desalinización, tanto de aquellos que se vienen empleando desde hace tiempo, como de nuevos métodos reportados, así como algunas consideraciones respecto a la energía empleada y los costos del agua desalinizada obtenida.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Henry Salinas-Freire , Grupo de Análisis de Procesos, Facultad de Ingeniería Química, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE). Marianao, La Habana, Cuba.

Henry Salinas (Ambato, Ecuador)

Ingeniero Químico por la Universidad Central de Ecuador, posteriormente obtuvo el título de Ms.C en la Pontificia Universidad Católica de Ecuador. Actualmente es Candidato al Doctorado en Procesos de Ingeniería Química por la Universidad Tecnológica de La Habana “José Antonio Echeverria”, CUJAE en Cuba, desarrollando un trabajo relacionado con la desalinización de agua de mar empleando destiladores solares, tema sobre el cual ha realizado algunas publicaciones y ponencias en Congresos Científicos Internacionales.

 

Osney Pérez-Ones , Grupo de Análisis de Procesos, Facultad de Ingeniería Química, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE). Marianao, La Habana, Cuba.

Osney Pérez Ones (La Habana, Cuba)

Ingeniero Químico (1998), Máster en Tecnología de la Industria Azucarera (2003). Doctor en Ciencias Técnicas (2011). Profesor Auxiliar (2012). Decano (2015-actualidad) de la Facultad de Ingeniería Química de la Cujae. Tutor de Trabajos de Diploma de Ingeniería Química, Tesinas de Diplomado y Tesis de Maestría. Ha participado en la red temática CYTED y otros proyectos de investigación. Por sus resultados en las investigaciones ha recibido reconocimientos y premios.

Susana Rodríguez-Muñoz , Grupo de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE). Marianao, La Habana, Cuba.

Dr. C. Susana Rodríguez Muñoz (Cuba)

Graduada de Ingeniero químico en julio del año 2000, en el Instituto Superior José Antonio Echeverría, Cujae, La Habana, Cuba. Máster en Ingeniería en Saneamiento ambiental, 2004. Grado científico: Doctor en Ciencias Técnicas, enero del 2010 y Categoría docente: Profesor auxiliar, 2013. Actualmente se desempeña como profesora de la Facultad de Ingeniería química, de la Universidad Tecnológica de La Habana "José Antonio Echeverría", Cujae. Es además, Jefa del grupo de investigaciones Ingeniería ambiental, y Vicedecana de Investigaciones y Posgrados de la Facultad de Ingeniería Química de la Universidad Tecnológica de La Habana "José Antonio Echeverría", Cujae.

Citas

J. Nihill, M. Leary, and A. Date, "A Novel Approach to Low Temperature Thermal Reverse Osmosis Desalination," Procedia Technology, vol. 20, pp. 144-148, 2015. https://doi.org/10.1016/j.protcy.2015.07.024

K. P. Lee, T. C. Arnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination-development to date and future potential," Journal of Membrane Science, vol. 370, no. 1-2, pp. 1-22, 2011. https://doi.org/10.1016/j.memsci.2010.12.036

A. D. Khawaji, I. K. Kutubkhanah, and J.-M. Wie, "Advances in seawater desalination technologies," Desalination, vol. 221, no. 1-3, pp. 47-69, 2008. https://doi.org/10.1016/j.desal.2007.01.067

G. N. Tiwari, H. N. Singh, and R. Tripathi, "Present status of solar distillation," Solar energy, vol. 75, no. 5, pp. 367-373, 2003. https://doi.org/10.1016/j.solener.2003.07.005

D. Curto, V. Franzitta, and A. Guercio, "A Review of the Water Desalination Technologies," Applied Sciences, vol. 11, no. 2, p. 670, 2021. https://doi.org/10.3390/app11020670

A. Alkaisi, R. Mossad, and A. Sharifian-Barforoush, "A review of the water desalination systems integrated with renewable energy," Energy Procedia, vol. 110, pp. 268-274, 2017. https://doi.org/10.1016/j.egypro.2017.03.138

S. A. Kalogirou, "Seawater desalination using renewable energy sources," Progress in Energy and Combustion Science, vol. 31, no. 3, pp. 242-281, 2005. https://doi.org/10.1016/j.pecs.2005.03.001

S. Miller, H. Shemer, and R. Semiat, "Energy and environmental issues in desalination," Desalination, vol. 366, pp. 2-8, 2015. https://doi.org/10.1016/j.desal.2014.11.034

P. G. Youssef, R. K. AL-Dadah, and S. M. Mahmoud, "Comparative Analysis of Desalination Technologies," Energy Procedia, vol. 61, pp. 2604-2607, 2014. https://doi.org/10.1016/j.egypro.2014.12.258

M. Chang and Y. Hwang, "Coupling of MED-TVC with SMART for nuclear desalination," International journal of nuclear desalination, vol. 1, no. 1, pp. 69-80, 2003. https://doi.org/10.1504/IJND.2003.003444

T. H. Dahdah and A. Mitsos, "Structural optimization of seawater desalination: I. A flexible superstructure and novel MED-MSF configurations," Desalination, vol. 344, pp. 252-265, 2014. https://doi.org/10.1016/j.desal.2014.03.030

A. N. Mabrouk and H. E. Fath, "Technoeconomic study of a novel integrated thermal MSF-MED desalination technology," Desalination, vol. 371, pp. 115-125, 2015. https://doi.org/10.1016/j.desal.2015.05.025

B. Van der Bruggen and C. Vandecasteele, "Distillation vs. membrane filtration: overview of process evolutions in seawater desalination," Desalination, vol. 143, no. 3, pp. 207-218, 2002. https://doi.org/10.1016/S0011-9164(02)00259-X

A. El-Ghonemy, "Performance test of a sea water multi-stage flash distillation plant: Case study," Alexandria engineering journal, vol. 57, no. 4, pp. 2401-2413, 2018. https://doi.org/10.1016/j.aej.2017.08.019

O. Kotb, "Optimum numerical approach of a MSF desalination plant to be supplied by a new specific 650MW power plant located on the Red Sea in Egypt," Ain Shams Engineering Journal, vol. 6, no. 1, pp. 257-265, 2015. https://doi.org/10.1016/j.asej.2014.09.001

S. Avlonitis, K. Kouroumbas, and N. Vlachakis, "Energy consumption and membrane replacement cost for seawater RO desalination plants," Desalination, vol. 157, no. 1, pp. 151-158, 2003. https://doi.org/10.1016/S0011-164(03)00395-3

N. Eid, "Overview of Membranes Technologies for Remediating Brackish Water," International Journal of Civil & Environmental Engineering IJCEE-IJENS, vol. 13, no. 1, pp. 8-12, 2013.

Y. A. Maher, M. E. Ali, H. E. Salama, and M. W. Sabaa, "Preparation, characterization and evaluation of chitosan biguanidine hydrochloride as a novel antiscalant during membrane desalination process," Arabian Journal of Chemistry, vol. 13, no. 1, pp. 2964-2981, 2020. https://doi.org/10.1016/j.arabjc.2018.08.006

H. Ettouney, "Design and analysis of humidification dehumidification desalination process," Desalination, vol. 183, no. 1-3, pp. 341-352, 2005. https://doi.org/10.1016/j.desal.2005.03.039

Q. Ma, C. Yi, H. Lu, L. Xie, J. Fan, and W. He, "A conceptual demonstration and theoretical design of a novel "super-gravity" vacuum flash process for seawater desalination," Desalination, vol. 371, pp. 67-77, 2015. https://doi.org/10.1016/j.desal.2015.06.004

H. Ettouney, H. El-Dessouky, and Y. Al-Roumi, "Analysis of mechanical vapour compression desalination process," International journal of energy research, vol. 23, no. 5, pp. 431-451, 1999. https://doi.org/10.1002/(SICI)1099-114X(199904)23:5<431::AID-ER491>3.0.CO;2-S

H. Jia and Y. Zhang, "Nuclear seawater desalination plant coupled with 200 MW heating reactor," International Journal of Nuclear Desalination, vol. 3, no. 2, pp. 230-239, 2008. https://doi.org/10.1504/IJND.2008.020227

Y. Bouaichaoui, A. Belkaid, and S. A. Amzert, "Economic and safety aspects in nuclear seawater desalination," Procedia Engineering, vol. 33, pp. 146-154, 2012. https://doi.org/10.1016/j.proeng.2012.01.1187

A. Sudi and A. Siti, "Economic Aspect for Nuclear Desalination Selection in Muria Peninsula," in Proceedings of an International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21. Century, Vienna (Austria), 2009.

B. M. Misra, "Advances in nuclear desalination," International journal of nuclear desalination, vol. 1, no. 1, pp. 19-29, 2003. https://doi.org/10.1504/IJND.2003.003440

I. Khamis, "A global overview on nuclear desalination," International Journal of Nuclear Desalination, vol. 3, no. 4, pp. 311-328, 2009. https://doi.org/10.1504/IJND.2009.028859

A. Belkaid, S. A. Amzert, Y. Bouaichaoui, and H. Chibane, "Economic Study of Nuclear Seawater Desalination for Mostaganem Site," Procedia Engineering, vol. 33, pp. 134-145, 2012. https://doi.org/10.1016/j.proeng.2012.01.1186

P. Asiedu-Boateng, B. Nyarko, S. Yamoah, F. Ameyaw, and K. Tuffour-Acheampong, "Comparison of the Cost of Co-Production of Power and Desalinated Water from Different Power Cycles," Energy and Power Engineering, vol. 5, no. 1, pp. 26-35, 2013. https://doi.org/10.4236/epe.2013.51004

A. Al-Othman, N. N. Darwish, M. Qasim, M. Tawalbeh, N. A. Darwish, and N. Hilal, "Nuclear desalination: A state-of-the-art review," Desalination, vol. 457, pp. 39-61, 2019. https://doi.org/10.1016/j.desal.2019.01.002

B. Bouchekima, "A solar desalination plant for domestic water needs in arid areas of South Algeria," Desalination, vol. 153, no. 1-3, pp. 65-69, 2003. https://doi.org/10.1016/S0011-9164(02)01094-9

P. Cooper, "The maximum efficiency of single-effect solar stills," Solar Energy, vol. 15, no. 3, pp. 205-214, 1973. https://doi.org/10.1016/0038-092X(73)90085-6

I. Al-Hayekaa and O. O. Badran, "The effect of using different designs of solar stills on water distillation," Desalination, vol. 169, no. 2, pp. 121-127, 2004. https://doi.org/10.1016/j.desal.2004.08.013

E. Chafik, "A new seawater desalination process using solar energy," Desalination, vol. 153, no. 1-3, pp. 25-37, 2003. https://doi.org/10.1016/S0011-9164(02)01090-1

P. Cooper and R. Dunkle, "A non-linear flat-plate collector model," Solar Energy, vol. 26, no. 2, pp. 133-140, 1981. https://doi.org/10.1016/0038-092X(81)90076-1

A. El-Sebaii and E. El-Bialy, "Advanced designs of solar desalination systems: A review," Renewable and Sustainable Energy Reviews, vol. 49, pp. 1198-1212, 2015.

https://doi.org/10.1016/j.rser.2015.04.161

G. Lof, J. Eibling, and J. Bloemer, "Energy balances in solar distillers," AIChE Journal, vol. 7, no. 4, pp. 641-649, 1961. https://doi.org/10.1002/aic.690070422

S. Kumar and G. Tiwari, "Estimation of convective mass transfer in solar distillation systems," Solar energy, vol. 57, no. 6, pp. 459-464, 1996. https://doi.org/10.1016/S0038-092X(96)00122-3

S. Mullick, "Estimation of heat-transfer coefficients, the upward heat flow, and evaporation in a solar still," Journal of solar energy engineering, vol. 113, no. 1, pp. 36-41, 1991. https://doi.org/10.1115/1.2929949

K. Sampathkumar, T. Arjunan, P. Pitchandi, and P. Senthilkumar, "Active solar distillation-a detailed review," Renewable and Sustainable Energy Reviews, vol. 14, no. 6, pp. 1503-1526, 2010. https://doi.org/10.1016/j.rser.2010.01.023

J. Y. Alaydi, "Design of a parabolic solar collector system for seawater desalination in Gaza," Desalination and Water Treatment, vol. 52, no. 13-15, pp. 2502-2511, 2014. https://doi.org/10.1080/19443994.2013.797546

H.-M. Yeh and N.-T. Ma, "Energy balances for upward-type, double-effect solar stills," Energy, vol. 15, no. 12, pp. 1161-1169, 1990. https://doi.org/10.1016/0360-5442(90)90107-D

M. Bindu and G. J. Herbert, "A review on application of nanomaterials in heat transfer fluid for parabolic trough concentrator," in Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.01.957

L. Zuo, Z. Liu, P. Dai, N. Qu, L. Ding, Y. Zheng, and Y. Ge, "Economic performance evaluation of the wind supercharging solar chimney power plant combining desalination and waste heat after parameter optimization," Energy, vol. 227, p. 120496, 2021. https://doi.org/10.1016/j.energy.2021.120496

E. Abdelsalam, F. Kafiah, M. Tawalbeh, F. Almomani, A. Azzam, I. Alzoubi, and M. Alkasrawi, "Performance analysis of hybrid solar chimney-power plant for power production and seawater desalination: A sustainable approach," International Journal of Energy Research, pp. 1-15, 2020. https://doi.org/10.1002/er.6004

L. Zuo, Z. Liu, N. Qu, P. Dai, Y. Sun, and B. Qu, "Economic analysis of a wind supercharging solar chimney power plant combined with thermal plant for power and freshwater generation," in 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2020, pp. 1-6. https://doi.org/10.1109/APPEEC48164.2020.9220738

I. M. Alarifi, A. G. Abo-Khalil, A.-R. Al-Qawasmi, W. Alharbi, and M. Alobaid, "On the effects of nanomaterials on the performance of solar distillation systems-A comprehensive review," Solar Energy, vol. 218, pp. 596-610, 2021. https://doi.org/10.1016/j.solener.2021.03.018

M. A. Anderson, A. L. Cudero, and J. Palma, "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?" Electrochimica Acta, vol. 55, no. 12, pp. 3845-3856, 2010. https://doi.org/10.1016/j.electacta.2010.02.012

A. H. M. Golam-Hyder, B. A. Morales, M. A. Cappelle, S. J. Percival, L. J. Small, E. D. Spoerke, S. B. Rempe, and W. Shane Walker, "Evaluation of Electrodialysis Desalination Performance of Novel Bioinspired and Conventional Ion Exchange Membranes with Sodium Chloride Feed Solutions," Membranes, vol. 11, no. 3, p. 217, 2021. https://doi.org/10.3390/membranes11030217

U. Assalaam, "Technology Reverse Electrodialysis Membrane," Journal of Membranes and Materials, vol. 1, no. 1, pp. 10-19, Mar. 2021.

L. Gurreri, A. Filingeri, M. Ciofalo, A. Cipollina, M. Tedesco, A. Tamburini, and G. Micale, "Electrodialysis with asymmetrically profiled membranes: Influence of profiles geometry on desalination performance and limiting current phenomena," Desalination, vol. 506, p. 115001, Jun. 2021. https://doi.org/10.1016/j.desal.2021.115001

J. Koschikowski, M. Wieghaus, and M. Rommel, "Solar thermal driven desalination plants based on membrane distillation," Desalination, vol. 156, no. 1-3, pp. 295-304, 2003. https://doi.org/10.1016/S0011-9164(03)00360-6

S. B. Abdallah, N. Frikha, and S. Gabsi, "Study of the performances of different configurations of seawater desalination with a solar membrane distillation," Desalination and Water Treatment, vol. 52, no. 13-15, pp. 2362-2371, 2014. https://doi.org/10.1080/19443994.2013.792746

Z. Zhang, O. R. Lokoare, A. V. Gusa, and R. D. Vidic, "Pretreatment of brackish water reverse osmosis (BWRO) concentrate to enhance water recovery in inland desalination plants by direct contact membrane distillation (DCMD)," Desalination, vol. 508, p. 115050, 2021. https://doi.org/10.1016/j.desal.2021.115050

I.-M. Hsieh, A. K. Thakur, and M. Malmali, "Comparative analysis of various pretreatments to mitigate fouling and scaling in membrane distillation," Desalination, vol. 509, p. 115046, 2021. https://doi.org/10.1016/j.desal.2021.115046

A. H. Avci, S. Santoro, A. Politano, M. Propato, M. Micieli, M. Aquino, Z. Wenjuan, and E. Curcio, "Photothermal Sweeping Gas Membrane Distillation and Reverse Electrodialysis for light-to-heat-to-power conversion," Chemical Engineering and Processing-Process Intensification, vol. 164, p. 108382, 2021. https://doi.org/10.1016/j.cep.2021.108382

H. Lu, W. Shi, F. Zhao, W. Zhang, P. Zhang, C. Zhao, and G. Yu, "High-Yield and Low-Cost Solar Water Purification via Hydrogel-Based Membrane Distillation," Advanced Functional Materials, vol. 31, no. 19, p. 2101036, 2021. https://doi.org/10.1002/adfm.202101036

M. Khayet, M. Godino, and J. Mengual, "Possibility of nuclear desalination through various membrane distillation configurations: a comparative study," International journal of nuclear desalination, vol. 1, no. 1, pp. 30-46, 2003. https://doi.org/10.1504/IJND.2003.003441

M. Khayet, "Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review)," Desalination, vol. 308, pp. 89-101, 2013. https://doi.org/10.1016/j.desal.2012.07.010

G. W. Meindersma, C. M. Guijt, and A. B. de Haan, "Desalination and water recycling by air gap membrane distillation," Desalination, vol. 187, no. 1-3, pp. 291-301, 2006. https://doi.org/10.1016/j.desal.2005.04.088

U. Mardiana, C. Innocent, M. Cretin, and B. Buchari, "A New Method of Bio-Catalytic Surface Modification for Microbial Desalination Cell," International Journal of Renewable Energy Development, vol. 10, no. 2, pp. 345-354, 2021. https://doi.org/10.14710/ijred.2021.34235

H. H. Salman and Z. Z. Ismail, "Modeling and simulation of the processes in desalination fuel cell fed with actual wetland brackish water," Journal of Applied Electrochemistry, vol. 51, pp. 905-916, 2021. https://doi.org/10.1007/s10800-021-01546-0

C.-Y. Ma and C.-H. Hou, "Enhancing the water desalination and electricity generation of a microbial desalination cell with a three-dimensional macroporous carbon nanotube-chitosan sponge anode," Science of The Total Environment, vol. 675, pp. 41-50, 2019. https://doi.org/10.1016/j.scitotenv.2019.04.174

S. Sevda, H. Yuan, Z. He, and I. M. Abu-Reesh, "Microbial desalination cells as a versatile technology: functions, optimization and prospective," Desalination, vol. 371, pp. 9-17, 2015. https://doi.org/10.1016/j.desal.2015.05.021

Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review)," Desalination, vol. 228, no. 1-3, pp. 10-29, 2008. https://doi.org/10.1016/j.desal.2007.08.005

Y. Bouhadana, E. Avraham, M. Noked, M. Ben-Tzion, A. Soffer, and D. Aurbach, "Capacitive deionization of NaCl solutions at non-steady-state conditions: inversion functionality of the carbon electrodes," The Journal of Physical Chemistry C, vol. 115, no. 33, pp. 16 567-16 573, 2011. https://doi.org/10.1021/jp2047486

E. T. Sayed, M. A. Radi, A. Ahmad, M. A. Abdelkareem, H. Alawadhi, M. A. Atieh, and A. G. Olabi, "Faradic Capacitive Deionization (FCDI) for Desalination and Ion Removal from Wastewater," Chemosphere, vol. 275, p. 130001, 2021. https://doi.org/10.1016/j.chemosphere.2021.130001

Y.-H. Liu, T.-C. Yu, Y.-W. Chen, and C.-H. Hou, "Incorporating manganese dioxide in carbon nanotube-chitosan as a pseudocapacitive composite electrode for high-performance desalination," ACS Sustainable Chemistry & Engineering, vol. 6, no. 3, pp. 3196-3205, 2017. https://doi.org/10.1021/acssuschemeng.7b03313

J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, "Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes," Journal of the Electrochemical Society, vol. 143, no. 1, pp. 159-169, 1996. https://doi.org/10.1149/1.1836402

X.-X. Ke, T.-Y. Wang, X.-Q. Wu, J.-P. Chen, Q.-B. Zhao, and Y.-M. Zheng, "Alleviation of Reverse Salt Leakage across Nanofiber Supported Thin-Film Composite Forward Osmosis Membrane via Heat-Curing in Hot Water," Membranes, vol. 11, no. 4, p. 237, 2021. https://doi.org/10.3390/membranes11040237

M.-N. Li, X.-J. Chen, Z.-H. Wan, S.-G. Wang, and X.-F. Sun, "Forward osmosis membranes for high-efficiency desalination with Nano-MoS2 composite substrates," Chemosphere, vol. 278, p. 130341, 2021. https://doi.org/10.1016/j.chemosphere.2021.130341

P. Deka, V. K. Verma, B. Yurembam, A. B. Neog, K. Raidongia, and S. Subbiah, "Performance evaluation of reduced graphene oxide membrane doped with polystyrene sulfonic acid for forward osmosis process," Sustainable Energy Technologies and Assessments, vol. 44, p. 101093, 2021. https://doi.org/10.1016/j.seta.2021.101093

R. L. McGinnis and M. Elimelech, "Energy requirements of ammonia-carbon dioxide forward osmosis desalination," Desalination, vol. 207, no. 1-3, pp. 370-382, 2007. https://doi.org/10.1016/j.desal.2006.08.012

A. Shakeri, H. Salehi, and M. Rastgar, "Chitosan-based thin active layer membrane for forward osmosis desalination," Carbohydrate polymers, vol. 174, pp. 658-668, 2017. https://doi.org/10.1016/j.carbpol.2017.06.104

J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process," Desalination, vol. 174, no. 1, pp. 1-11, 2005. https://doi.org/10.1016/j.desal.2004.11.002

M. Pachter and A. Barak, "The vacuum freezing vapor compression (Zarchin) process Present status and future trends," Desalination, vol. 2, no. 3, pp. 358-367, 1967. https://doi.org/10.1016/S0011-9164(00)80121-6

W. Cao, C. Beggs, and I. M. Mujtaba, "Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy," Desalination, vol. 355, pp. 22-32, 2015. https://doi.org/10.1016/j.desal.2014.09.034

E. Hernández Yáñez, M. Blanco Abellán, N. V. Pazmiño, M. Raventós Santamaria, S. Samsuri, R. Y. Ruiz Pardo, F. L. Moreno Moreno, and A. Rich, "Two strategies for freeze desalination of seawater by progressive and block techniques," Desalination and Water Treatment, vol. 215, pp. 1-9, 2021. https://doi.org/10.5004/dwt.2021.26798

M. Salajeghe and M. Ameri, "Performance investigation of freezing desalination coupled with carbon dioxide refrigeration system," Amirkabir Journal of Mechanical Engineering, vol. 53, no. 5, pp. 16-16, 2020.

A. Rich, Y. Mandri, D. Mangin, A. Rivoire, S. Abderafi, C. Bebon, N. Semlali, J.-P. Klein, T. Bounahmidi, A. Bouhaouss, and S. Veesler, "Sea water desalination by dynamic layer melt crystallization: Parametric study of the freezing and sweating steps," Journal of Crystal Growth, vol. 342, no. 1, pp. 110-116, 2012. https://doi.org/10.1016/j.jcrysgro.2011.03.061

T. Gettongsong, M. Taseidifar, R. M. Pashley, and B. W. Ninham, "Novel Resins for Efficient Desalination," Substantia, vol. 4, no. 2, pp. 39-48, 2020. https://doi.org/10.36253/Substantia-826

T. Gettongsong, M. Taseidifar, and R. M. Pashley, "New Resins for Ion Exchange Applications and a Process for Their Sustainable Regeneration," Substantia, vol. 4, no. 2, pp. 33-37, 2020. https://doi.org/10.36253/Substantia-824

S. Burn, M. Hoang, D. Zarzo, F. Olewniak, E. Campos, B. Bolto, and O. Barron, "Desalination techniques-a review of the opportunities for desalination in agriculture," Desalination, vol. 364, pp. 2-16, 2015. https://doi.org/10.1016/j.desal.2015.01.041

M. Faegh, P. Behnam, M. B. Shafii, and M. Khiadani, "Development of artificial neural networks for performance prediction of a heat pump assisted humidification-dehumidification desalination system," Desalination, vol. 508, p. 115052, 2021. https://doi.org/10.1016/j.desal.2021.115052

S. M. Negharchi, A. Najafi, A. A. Nejad, and N. Ghadimi, "Determination of the optimal model for solar humidification dehumidification desalination cycle with extraction and injection," Desalination, vol. 506, p. 114984, 2021. https://doi.org/10.1016/j.desal.2021.114984

M. H. Elbassoussi, M. Antar, and S. M. Zubair, "Hybridization of a triple-effect absorption heat pump with a humidification-dehumidification desalination unit: Thermodynamic and economic investigation," Energy Conversion and Management, vol. 233, p. 113879, 2021. https://doi.org/10.1016/j.enconman.2021.113879

Y. Elhenawy, "Experimental Investigation of the Helical Condenser for Humidification Dehumidification Desalination Unit Powered by Solar Energy," Journal of Environmental Treatment Techniques, vol. 9, no. 2, pp. 402-409, 2021. https://doi.org/10.47277/JETT/9(2)409

Y. Cao, H. A. Dhahad, T. Parikhani, A. E. Anqi, and A. M. Mohamed, "Thermo-economic evaluation of a combined Kalina cycle and humidification-dehumidification (HDH) desalination system integrated with thermoelectric generator and solar pond," International Journal of Heat and Mass Transfer, vol. 168, p. 120844, 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120844

R. Tariq, J. Jimenez, N. Ahmed Sheikh, and S. Khan, "Mathematical Approach to Improve the Thermoeconomics of a Humidification Dehumidification Solar Desalination System," Mathematics, vol. 9, no. 33, pp. 1-31, 2020. https://doi.org/10.3390/math9010033

R. Das, M. E. Ali, S. B. A. Hamid, S. Ramakrishna, and Z. Z. Chowdhury, "Carbon nanotube membranes for water purification: a bright future in water desalination," Desalination, vol. 336, pp. 97-109, 2014. https://doi.org/10.1016/j.desal.2013.12.026

S. Mitra, K. Srinivasan, P. Kumar, S. Murthy, and P. Dutta, "Solar driven adsorption desalination system," Energy Procedia, vol. 49, pp. 2261-2269, 2014. https://doi.org/10.1016/j.egypro.2014.03.239

O. Alnajdi, Y. Wu, and J. Kaiser Calautit, "Toward a sustainable decentralized water supply: review of adsorption desorption desalination (ADD) and current technologies: Saudi Arabia (SA) as a case study," Water, vol. 12, no. 4, p. 1111, 2020. https://doi.org/10.3390/w12041111

K. C. Kang, P. Linga, K.-n. Park, S.-J. Choi, and J. D. Lee, "Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl- , SO42 - )," Desalination, vol. 353, pp. 84-90, 2014. https://doi.org/10.1016/j.desal.2014.09.007

K.-n. Park, S. Y. Hong, J. W. Lee, K. Chan Kang, Y. Cheol Lee, M.-G. Ha, and J. Dong Lee, "A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals Na+, Mg2+, Ca2+, K+, B3+ ," Desalination, vol. 274, no. 1-3, pp. 91-96, 2011. https://doi.org/10.1016/j.desal.2011.01.084

M. M. Falahieh, M. Bonyadi, and A. Lashanizadegan, "A new hybrid desalination method based on the CO2 gas hydrate and capacitive deionization processes," Desalination, vol. 502, p. 114932, 2021. https://doi.org/10.1016/j.desal.2021.114932

S. Nallakukkala, Z. Kassim, N. A. Othman, and B. Lal, "Advancement in Gas Hydrate Water Based Produced Water Desalination: An Overview," in Third International Conference on Separation Technology 2020 (ICoST 2020). Atlantis Press., 2020, pp. 190-197. https://doi.org/10.2991/aer.k.201229.027

M. Usman, Z. Rehman, K. Seong, and M. H. Song, "Vacuum degassing of aqueous tetrafluroethane (R134a) solution during seawater desalination utilizing gas hydrate," Desalination, vol. 498, p. 114754, 2021. https://doi.org/10.1016/j.desal.2020.114754

M. Karamoddin and F. Varaminian, "Water desalination using R141b gas hydrate formation," Desalination and Water Treatment, vol. 52, no. 13-15, pp. 2450-2456, 2014. https://doi.org/10.1080/19443994.2013.798840

R. Zhao, L. Zhao, S. Deng, Y. Tan, Y. Liu, and Z. Yu, "Techno-economic study of solar-assisted post-combustion carbon capture system integrated with desalination," Energy Procedia, vol. 61, pp. 1614-1617, 2014. https://doi.org/10.1016/j.egypro.2014.12.306

S. Loutatidou and H. A. Arafat, "Techno-economic analysis of MED and RO desalination powered by low-enthalpy geothermal energy," Desalination, vol. 365, pp. 277-292, 2015. https://doi.org/10.1016/j.desal.2015.03.010

D. Han, "Study on zero-emission desalination system based on mechanical vapor recompression technology," Energy procedia, vol. 75, pp. 1436-1444, 2015. https://doi.org/10.1016/j.egypro.2015.07.250

P. Youssef, R. Al-Dadah, and S. Mahmoud, "Comparative analysis of desalination technologies," Energy Procedia, vol. 61, pp. 2604-2607, 2014. https://doi.org/10.1016/j.egypro.2014.12.258

Descargas

Publicado

01-09-2021

Cómo citar

Salinas-Freire , H., Pérez-Ones , O., & Rodríguez-Muñoz , S. (2021). Estado del arte. Métodos de desalinización de agua. Revista Ingeniería UC, 28(2), 212–226. https://doi.org/10.54139/revinguc.v28i2.21

Número

Sección

Estado del arte