Diseño del sistema de suspensión para vehículo de acuerdo con parámetros BAJA SAE

Autores/as

  • Omar Franco-Camacho Maintenance Research Line, Faculty of Engineering, Universidad Libre, Mechanics Program, Bogota, Colombia. https://orcid.org/0000-0002-9604-6075
  • María Mago-Ramos Maintenance Research Line, Faculty of Engineering, Universidad Libre, Mechanics Program, Bogota, Colombia. https://orcid.org/0000-0001-7250-111X
  • Luis Vallés-Defendine Faculty of Engineering, Universidad de Carabobo, Mechanics Program, Valencia, Venezuela. https://orcid.org/0000-0002-3456-4846
  • Ricardo Ríos Maintenance Research Line, Faculty of Engineering, Universidad Libre, Mechanics Program, Bogota, Colombia. https://orcid.org/0000-0001-6525-8625

DOI:

https://doi.org/10.54139/revinguc.v27i3.296

Palabras clave:

diseño, sistema de suspensión, vehículo Mini Baja, parámetros SAE

Resumen

Esta investigación centra su estudio en el diseño de un sistema de suspensión para un vehículo BAJA SAE bajo los Parámetros SAE (Sociedad de Ingenieros Automotrices). Esta sociedad organiza diecisiete (17) concursos de estudiantes en ocho (8) series de diseño entre estudiantes universitarios denominados Competencias de Diseño Colegiado y Concursos de Diseño Colegiado, que incluyen temas representativos que se aplican a los vehículos Fórmula SAE, Fórmula Híbrida, SAE Aero Diseño, BAJA SAE, y SAE Clean Snowmobile Challenge. Este artículo de investigación evalúa los tipos de suspensión que se implementan en los vehículos mini-baja, y que, a su vez, cumplen con la normativa establecida por el concurso SAE del año 2020. La metodología utilizada a partir de los componentes de ingeniería mecánica y diseño de control, utiliza ecuaciones matemáticas que gobiernan el movimiento dinámico para evaluar el comportamiento del sistema de suspensión que a través de un sistema CAD, logra el modelado en un entorno real, evaluando factores como material, dimensiones de la pieza o selección del sistema, que pueden afectar su correcto funcionamiento. Esta investigación tiene como objetivo dar soporte a futuras aplicaciones, donde existan sistemas de suspensión que permitan absorber las irregularidades del terreno con cargas, donde se transmita en menor proporción según la estructura del vehículo mejorando la experiencia de manejo y maniobrabilidad requerida para ello, mejorando las competencias de los estudiantes, cumpliendo los parámetros establecidos por la SAE.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

G. I. Y. Mustafa, H. P. Wang, and Y. Tian, "Vibration control of an active vehicle suspension systems using optimized model-free fuzzy logic controller based on time delay estimation," Advances in Engineering Software, vol. 127, pp. 141-149, 2019. https://doi.org/10.1016/j.advengsoft.2018.04.009

J. A. García-Manrique, S. Peña-Miñano, and M. Rivas, "Manufacturing to motorsport by students," Procedia Engineering, vol. 132, pp. 259-266, 2015. https://doi.org/10.1016/j.proeng.2015.12.493

S. Chepkasov, G. Markin, and A. Akulova, "Suspension kinematics study of the "Formula SAE" sports car," Procedia Engineering, vol. 150, pp. 1280-1286, 2016. https://doi.org/10.1016/j.proeng.2016.07.288

R. Burdzik, "Novel method for research on exposure to nonlinear vibration transferred by suspension of vehicle," International Journal of Non-Linear Mechanics, vol. 91, pp. 170-180, 2017. https://doi.org/10.1016/j.ijnonlinmec.2016.10.014

I. V. Ryabov, V. V. Novikov, and A. V. Pozdeev, "Efficiency of shock absorb in vehicle suspension," Procedia Engineering, vol. 150, pp. 354-362, 2016. https://doi.org/10.1016/j.proeng.2016.06.721

G. M. Szyma-ski, M. Josko, F. Tomaszewski, and R. Filipiak, "Application of time-frequency analysis to the evaluation of the condition of car suspension," Mechanical Systems and Signal Processing, vol. 58- 59, pp. 298-307, 2015. https://doi.org/10.1016/j.ymssp.2014.12.017

E. Sert and P. Boyraz, "Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle," Engineering Science and Technology, an International Journal, vol. 20, no. 3, pp. 997-1012, 2017. https://doi.org/10.1016/j.jestch.2017.03.007

B. Németh and P. Gáspár, "LPV-based VariableGeometry Suspension Control Considering Nonlinear Tyre Characteristics," IFAC-PapersOnLine, vol. 48, no. 26, pp. 61-66, 2015. https://doi.org/10.1016/j.ifacol.2015.11.114

C. Kavitha, S. A. Shankar, K. Karthika, B. Ashok, and S. D. Ashok, "Active camber and toe control strategy for the double wishbone suspension system," Journal of King Saud University - Engineering Sciences, vol. 31, no. 4, pp. 375-384, 2018. https://doi.org/10.1016/j.jksues.2018.01.003

J. Díaz-Mendoza, L. Vidal-Portilla, C. RamírezEspinoza, y C. González-Pinzón, Diseño de un vehículo Baja SAE, ser. Colección Textos Universitarios. Serie Investigación. Universidad Autónoma de Ciudad Juarez, 2013.

S. K. Sharma, V. Pare, M. Chouksey, and B. R. Rawal, "Numerical studies using full car model for combined primary and cabin suspension," Procedia Technology, vol. 23, pp. 171-178, 2016. https://doi.org/10.1016/j.protcy.2016.03.014

M. Nagarkar, Y. Bhalerao, G. Patil, and R. Patil, "Multi-Objective Optimization of Nonlinear Quarter Car Suspension System - PID and LQR Control," Procedia Manufacturing, vol. 20, pp. 420-427, 2018. https://doi.org/10.1016/j.promfg.2018.02.061

H. Jing, R. Wang, C. Li, and J. Bao, "Robust finitefrequency H. control of fullcar active suspension," Journal of Sound and Vibration, vol. 441, pp. 221-239, 2019. https://doi.org/10.1016/j.jsv.2018.06.047

H. Carlson, Spring Designer's Handbook. CRC Press, 1978.

S. Saurabh, K. Kumar, S. Kamal-Jain, S. KumarBehera, D. Gandhi, S. Raghavendra, and K. Kalita, "Design of suspension system for formula student race car," Procedia Engineering, vol. 144, pp. 1138-1149, 2016. https://doi.org/10.1016/j.proeng.2016.05.081

G. Shelke, A. Mitra, and V. Varude, "Validation of Simulation and Analytical Model of Nonlinear Passive Vehicle Suspension System for Quarter Car," Today Materials: Proceedings, vol. 5, no. 9, pp. 19 294- 19 302, 2018. https://doi.org/10.1016/j.matpr.2018.06.288

W. Wang and Y. Song, "Analytical computation method for steady-state stochastic response of a time-delay nonlinear automotive suspension system," Mechanical Systems and Signal Processing, vol. 131, pp. 434-445, 2019. https://doi.org/10.1016/j.ymssp.2019.05.061

A. Keivan and B. Phillips, "Rate-independent linear damping in vehicle suspension systems," Journal of Sound and Vibration, vol. 431, pp. 405-421, 2018. https://doi.org/10.1016/j.jsv.2018.05.037

G. Yan, M. Fang, and J. Xu, "Analysis and experiment of time-delayed optimal control for vehicle suspension system." Journal of Sound and Vibration, vol. 446, pp. 144-158, 2019. https://doi.org/10.1016/j.jsv.2019.01.015

Associated Spring-Barnes Group, Design Handbook. Bristol, Conn, 1987.

D. Pastorcic, G. Vukelic, and Z. Bozic, "Coil spring failure and fatigue analysis," Engineering Failure Analysis, vol. 99, pp. 310-318, 2019. https://doi.org/10.1016/j.engfailanal.2019.02.017

Y. Mohammad-Hashemi, M. Kadkhodaei, and M. Mohammadzadeh, "Fatigue analysis of shape memory alloy helical springs," International Journal of Mechanical Sciences, vol. 161-162, p. 105059, 2019. https://doi.org/10.1016/j.ijmecsci.2019.105059

T. Keerthi vasan, S. Shibi, and C. Tamilselvan, "Fabrication and testing of composite leaf spring using carbon, glass and aramid fiber." Materials Today: Proceedings, vol. 21, pp. 45-51, 2019. https://doi.org/10.1016/j.matpr.2019.05.358

J. Foard, D. Rollason, A. Thite, and C. Bell, "Polymer composite belleville springs for an automotive application." Composite Structures, vol. 221, p. 110891, 2019. https://doi.org/10.1016/j.compstruct.2019.04.063

X. Ma, P. Wong, and J. Zhao, "Practical multiobjective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper," Mechanical Systems and Signal Processing, vol. 117, pp. 667-688, 2019. https://doi.org/10.1016/j.ymssp.2018.08.022

M. Omar, M. El-kassaby, and W. Abdelghaffar, "Parametric numerical study of electrohydraulic active suspension performance against passive suspension," Alexandria Engineering Journal, vol. 57, no. 4, p. 36093614, 2018. https://doi.org/10.1016/j.aej.2018.05.007

M. Benko, L. Kucera, and L. Smetánka, "Front suspension design of the lightweight vehicle," Transportation Research Procedia, vol. 40, pp. 623- 630, 2019. https://doi.org/10.1016/j.trpro.2019.07.089

A. Furg, A. Myrell, A. Killinger, and R. Gadow, "Suspension and coating characterization of high velocity suspension flame sprayed (HVSFS) mixed titanium oxide-titanium carbide coatings," Surface and Coatings Technology, vol. 371, pp. 90-96, 2019. https://doi.org/10.1016/j.surfcoat.2018.08.085

J. Shigley and C. Mischke, Design in Mechanical Engineering, 6th ed. Mexico: McGrawHill, 2002.

L. Harus and H. Wiwiek, "A Comparative Study of the Damping Force and Energy Absorbtion Capacity of Regenerative and Conventional-Viscous Shock Absorber of Vehicle Suspension," Applied Mechanics and Materials, vol. 758, pp. 45-50, 2015. https://doi.org/10.4028/www.scientific.net/AMM.758.45

J. Rumney, "Construction of motor vehicle springs," Transactions (Society of Automobile Engineers), vol. 2, no. 2, pp. 45-56, 1907. https://doi.org/10.4271/070007

C. Patiño, C. Calderon, J. Ortiz, y O. Rodríguez, "Diseño y construcción de un prototipo mini baja SAE," Trabajo para optar al título de Ingeniero Mecánico, Universidad Pontificia Bolivariana., Bucaramanga, 2008.

V. Chacón, "Diseño de una suspensión para un vehículo automóvil basada en amortigaudores magneto-reológicos," Trabajo para optar a la título de Ingeniería Técnica Industrial, Especialidad Mecánica, Escuela Politécnica Suerior de la Universidad Carlos III de Madrid, 2009.

Descargas

Publicado

30-12-2020

Cómo citar

Franco-Camacho, O., Mago-Ramos, M., Vallés-Defendine, L., & Ríos, R. (2020). Diseño del sistema de suspensión para vehículo de acuerdo con parámetros BAJA SAE. Revista Ingeniería UC, 27(3), 374–387. https://doi.org/10.54139/revinguc.v27i3.296

Número

Sección

Artículos