Materiales Compuestos de Boro Producidos por Síntesis Autopropagante a Temperaturas Elevadas

Autores/as

DOI:

https://doi.org/10.54139/revinguc.v28i1.5

Palabras clave:

material compuesto, carburo de boro, síntesis autopropagante a temperaturas elevadas, análisis termodinámico.

Resumen

Este trabajo es un estudio de las condiciones para la obtención de compuestos de carburo de boro, magnesia y óxido de aluminio por medio de síntesis autopropagante a temperaturas elevadas (SAPTE). Las sustancias utilizadas para sintetizar los compuestos incluyeron óxido de boro, magnesia y óxido de aluminio. Se llevó a cabo la SAPTE con la fase de reducción como la siguiente reacción agregada: 2B2O3+6Mg+xC −−−> ByCx+6MgO, 2B2O3+4Al+xC=2Al2O3+ByCx. La SAPTE térmica metálica que utiliza óxido de boro parece más atractiva que los métodos actuales de producción de carburo que se caracterizan por procesos fisicoquímicos de larga duración y múltiples etapas que requieren mayores costos de materiales, energía y financieros. Los cálculos termodinámicos de la composición de fase de los productos y la temperatura de combustión adiabática para los sistemas B2O3–Mg–C, B2O3–Al–C se realizaron en el programa FastStage. Los cálculos y pruebas permitieron identificar las condiciones óptimas de SAPTE. Los productos de SAPTE se examinaron mediante análisis de fase de rayos X y el método SEM. Las composiciones del sistema B2O3–Mg–C obtenido por SAPTE estuvieron representadas principalmente por carburo de boro, magnesia, borato de magnesio y Mg3B2O6. Los productos del sistema B2O3–Al–C obtenido por SAPTE contenían carburo de boro, alúmina y boruro de aluminio.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

P. S. Kislyi and M. A. Kuznetsova, Boron carbide. Kyiv: Naukova Dumka, 1988.

R. A. Andrievskii, "Synthesis, Structure, and Properties of Microsize and Nanosize Boron Carbide [Mikro- i nanorazmernyy karbid bora: sintez, struktura i svoystva]," Russian Chemical Reviews (Uspekhi Khimii), vol. 81, no. 6, pp. 549-559, 2012. https://doi.org/10.1070/RC2012v081n06ABEH004287

N. S. Hosmane, Boron Science: New Technologies and Applications. Boca Raton (Florida, US): CRC Press (Taylor and Francis Group), 2012.

D. Radev and E. Ampaw, "Classical and contemporary synthesis methods of boron carbide powders," Comptes rendus de l'Académie bulgare des sciences: sciences mathématiques et naturelles, vol. 68, no. 8, pp. 945-956, 201

G. Goller, C. Toy, A. Tekin, and C. K. Gupta, "The production of boron carbide by carbothermic reduction," High Temperature Materials and Process, vol. 15, no. 1-2, pp. 117-122, 1996. https://doi.org/10.1515/HTMP.1996.15.1-2.117

F. Thevenot, "Boron carbide-a comprehensive review," Journal of the European Ceramic Society, vol. 6, no. 4, pp. 205-225, 1990. https://doi.org/10.1016/0955-2219(90)90048-K

D. A. Ovsyannikov, M. Y. Popov, S. A. Perfilov, V. M. Prokhorov, B. A. Kul'nitskiy, I. A. Perezhogin, and V. D. Blank, "Highly Rigid Ceramics Based on Borob Carbide and Fullerite Products [Vysokotverdaya keramika na osnove karbida bora i proizvodnykh fullerita]," Semiconductors/Physics of the Solid State, vol. 59, no. 2, pp. 318-321, 2017. https://doi.org/10.1134/S1063783417020214

A. G. Merzhanov and I. P. Borovinskaya, "Historical Retrospective of SHS: An Autoreview," International Journal of Self-Propagating High-Temperature Synthesis, vol. 17, no. 4, pp. 242-265, 2008. https://doi.org/10.3103/S1061386208040079

R. G. Abdulkarimova, A. J. Seidualiyeva, and K. Kamunur, "Synthesis of Composite Materials Based on Borides of Metals and Aluminum Oxide under the Combustion Conditions," Journal of Materials Science and Engineering B, vol. 8, no. 3-4, pp. 56-65, 2018. https://doi.org/10.17265/2161-6221/2018.3-4.003

E. A. Levashov, A. S. Rogachev, V. V. Kurbatkina, Y. M. Maximov, and V. I. Yukhvid, Promising materials and technologies of self-propagating high temperature synthesis [Perspektivnyye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza]. Moscow: NUST MISIS, 2011.

A. G. Merzhanov and A. S. Mukasyan, Solid Flame Combustion [Tverdoplamennoye goreniye]. Moscow: Torus Press, 2007.

J. H. Lee, W. Won, S. M. Joo, D. Y. Maeng, and H. Kim, "Preparation of B4C powder from B2O3 oxide by SHS process," Journal of Materials Science Letters, vol. 19, no. 11, pp. 951-954, 2000. https://doi.org/10.1023/A:1006760020130

V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov, and N. V. Sachkova, "Combustion synthesis and consolidation B4C - TiB2 composites [SVS-kompaktirovaniye kompozita B4C - TiB2]," Letters on materials, vol. 6, no. 3, pp. 217-220, 2016. https://doi.org/10.22226/2410-3535-2016-3-217-220

Z. A. Mansurov, S. M. Fomenko, A. N. Alipbaev, R. G. Abdulkarimova, and V. E. Zarko, "Aluminothermic Combustion of Chromium Oxide Based Systems under High Nitrogen Pressure," Combustion Explosion, and Shock Waves, vol. 52, no. 2, pp. 184-192, 2016. https://doi.org/10.1134/S0010508216020088

I. H. Jung and M. A. Van Ende, "Computational Thermodynamic Calculations: FactSage from CALPHAD Thermodynamic Database to Virtual Process Simulation," Metallurgical and Materials Transactions B, vol. 51, no. 5, pp. 1851-1874, 2020. https://doi.org/10.1007/s11663-020-01908-7

S. Mishra and L. C. Pathak, "Self-Propagating High-Temperature Synthesis (SHS) of Advanced High-Temperature Ceramics," Key Engineering Materials, vol. 395, pp. 15-38, 2008. https://doi.org/10.4028/www.scientific.net/KEM.395.15

M. A. Korchagin, T. F. Grigorieva, B. B. Bohonov, A. P. Sharafutdinov, B. B. Barinova, and N. Z. Lyakhov, "Solid- State Combustion in Mechanically Activated SHS Systems. II. Effect of Mechanical Activation Conditions on Process Parameters and Combustion Product Composition," Combustion, Explosion, and Shock Waves, vol. 39, no. 1, pp. 51-58, 2003. https://doi.org/10.1023/A:1022197218749

M. A. Korchagin and D. V. Dudin, "The use of self-propagating high temperature synthesis and mechanical activation for production of nanocomposites [Ispol'zovaniye samorasprostranyayushchegosya vysokotemperaturnogo sinteza i mekhanicheskoy aktivatsii dlya polucheniya nanokompozitov]," Combustion, Explosion, and Shock Waves, vol. 43, no. 2, pp. 176-187, 2007. https://doi.org/10.1007/s10573-007-0024-3

S. Tolendiuly, S. M. Fomenko, R. G. Abdulkarimova, and A. Akishev, "Synthesis and superconducting properties of the MgB2@BaO composites," Inorganic and Nano-Metal Chemistry, vol. 50, no. 5, pp. 349-353, 2020. https://doi.org/10.1080/24701556.2019.1711400

S. Tolendiuly, S. M. Fomenko, Z. A. Mansurov, G. Dannangoda, and K. S. Martirosyan, "Self-propagating high temperature synthesis of MgB2 superconductor in high-pressure of argon condition," Eurasian Chemico-Technological Journal, vol. 19, no. 2, pp. 177-181, 2017. https://doi.org/10.18321/ectj649

F. Bernard and E. Gaffet, "Mechanical alloying in the SHS research," International Journal of Self-Propagating High- Temperature Synthesis, vol. 10, no. 2, pp. 109-132, 2001.

Z. V. Eremeeva, S. Vorotilo, V. S. Panov, L. V. Myakisheva, A. I. Lizunov, A. A. Nepapushev, D. A. Sidorenko, and D. Y. Mishunin, "Structure and Properties of Boron Carbide Produced by SHS and Mechanochemical Synthesis: a Comparative Study," in Fifteenth International Symposium on Self-Propagating High-Temperature Synthesis, Moscow, Russia, 2019, pp. 96-98.

N. N.P., B. I.P., and M. A.G., Combustion Processes in Chemical Technology and Metallurgy [Protsessy goreniya v khimicheskoy tekhnologii i metallurgii]. Joint Institute of Chemical Physics [Russian], 1975, ch. Thermal Dynamic Analysis of SHS Reactions [Termodinamicheskiy analiz reaktsiy SVS].

D. S. Raimkhanova, S. M. Fomenko, R. G. Abdulkarimova, and Z. A. Mansurov, "Effect of Argon Pressure and Aluminum Content (in TiO2 - H3BO3 - Al Mix) on Combustion and Formation of Chemical Composition in Combustion Products," Advanced Materials Research, vol. 746, pp. 62-67, 2013. https://doi.org/10.4028/www.scientific.net/AMR.746.62

Z. A. Mansurov, D. S. Abdulkarimova, O. Odawara, A. V. Gubarevich, A. S. Rogachev, N. Shkodich, and N. N. Kochetov, "Peculiarities of Self-Propagating High-Temperature Synthesis and Structure Formation of TiB2 - Al2O3 and CrB2 - Al2O3 Composites," Eurasian Chemico-Technological Journal, vol. 13, no. 3-4, pp. 161-168, 2011. https://doi.org/10.18321/ectj.80

Descargas

Publicado

03-05-2021

Cómo citar

Abdulkarimova , R. G., Seidualiyeva , A. J., Batkal, A. N., Tolendiuly , S. ., & Fomenko , S. M. . (2021). Materiales Compuestos de Boro Producidos por Síntesis Autopropagante a Temperaturas Elevadas. Revista Ingeniería UC, 28(1), 111–120. https://doi.org/10.54139/revinguc.v28i1.5

Número

Sección

Artículos